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Introduction

QCD at finite baryon/quark-number density has a sign problem
which prevents direct application of standard lattice simulations
that are based on importance sampling.

When finite density is implemented introducing a quark-number
chemical potential µ, the sign problem manifests itself by mak-
ing the fermion determinant complex.

Since Langevin simulations are not based on importance sam-
pling, they can be extended to the case of complex actions. For
lattice QCD this requires analytically continuing the gauge fields
from SU(3) to SL(3,C).

Complex Langevin simulations cannot be guaranteed to pro-
duce correct results unless the trajectories are restricted to a
compact domain and the drift term is holomorphic in the fields.
The solutions should also be ergodic. Thus disconnected re-
gions of complex field space could be problematic.

For lattice QCD the domain is kept compact and close to the
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SU(3) manifold by adaptively adjusting the updating increment
and using gauge cooling (at least at weak coupling).

• However, zeroes of the fermion determinant produce poles in
the drift term making it meromorphic not holomorphic in the
fields. Thus convergence to the correct limits cannot be guar-
anteed.

A good discussion of what is known about the behaviour of the
CLE for lattice QCD at finite µ and related models, as well as a
guide to the literature, is given in Aarts-Seiler-Sexty-Stamatescu,
JHEP05, 044 (2017).

•We have simulated lattice QCD at zero temperature and µs
ranging from zero to saturation, at β = 6/g2 = 5.6 and β =
5.7. The weaker coupling shows good agreement with expecta-
tions at small and large µs, but fails for couplings in the transi-
tion region. The results are compared with those of the phase-
quenched approximation.

• Since it appears that good results might be obtained if the trajec-
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tories remain close to the SU(3) manifold, we are studying how
the unitarity norm, which measures this closeness, depends on
quark mass (m) and β.
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Complex Langevin for Lattice QCD at finite µ

If S(U) is the gauge action after integrating out the quark fields,
the Langevin equation for the evolution of the gauge fields U in
Langevin time t is:
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where M(U,µ) is the staggered Dirac operator. Backward links
are represented by U−1 not U†. We choose to keep the noise
term η real. We simulate the time evolution of the gauge fields
using a partial second-order formalism.

We apply adaptive updating: if the force term becomes too large,
dt is decreased to keep it under control. After each update, we
gauge cool, gauge fixing to the gauge which minimizes the unitarity
norm:

F (U) =
1

4V

∑
x,µTr


U†U + (U†U)−1 − 2


 ≥ 0 .

We use unimproved staggered quarks.
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Zero Temperature Simulations at β = 5.6 and β = 5.7

We perform CLE simulations of 2-flavour lattice QCD at zero
temperature at β = 5.6, m = 0.025 on a 124 lattice and at β =
5.7, m = 0.025 on a 164 lattice from µ = 0 up to saturation.
For comparison, we perform RHMC simulations of the phase-
quenched approximation over the same parameter range, since
random matrix theory suggests that when the CLE simulations
fail they produce the phase-quenched results.

The phase-quenched approximation is known to undergo a phase
transition to a superfluid phase with a quark-anti-conjugate-quark
condensate at µ ≈ mπ/2. The chiral condensate is constant
up to this transition and decreases beyond it, vanishing at sat-
uration. The quark-number density is zero up to the transition
beyond which it rises up to saturation, where all states are filled
(density=3 in our normalization). At saturation the quarks de-
couple and we have a pure gauge theory.

For the full theory one expects the observables to remain at
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their µ = 0 values up to µ ≈ mN/3 above which they evolve
towards saturation.

For β = 5.6, m = 0.025, mπ/2 ≈ 0.21, mN/3 ≈ 0.33, while
for β = 5.7, m = 0.025, mπ/2 ≈ 0.194, mN/3 ≈ 0.28.

We typically run for 2-3 million updates at each β and µ.
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Figure 1: Plaquettes as functions of µ for β = 5.6, m = 0.025 on a 124 lattice
and for β = 5.7, m = 0.025 on a 164 lattice.
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Figure 2: Chiral condensates as functions of µ for β = 5.6, m = 0.025 on a
124 lattice and for β = 5.7, m = 0.025 on a 164 lattice.
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Figure 3: Quark-number densities as functions of µ for β = 5.6, m = 0.025 on
a 124 lattice and for β = 5.7, m = 0.025 on a 164 lattice.
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Figure 4: Quark-number densities as functions of µ for β = 5.6, m = 0.025 on
a 124 lattice and for β = 5.7, m = 0.025 on a 164 lattice.
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β = 5.7 shows significant improvement over β = 5.6 for µ at
or near zero, and near saturation. β = 5.7 observables show
good agreement with known results for small and large µ.

At saturation, the quarks effectively decouple from the gluons,
and the gauge fields exhibit pure gauge dynamics. This agrees
with expectations.

In the transition region for these parameters, the CLE results
are even worse than the phase-quenched approximation.

The unitarity norm is significantly greater than zero throughout
the transition region for both β values. It becomes small around
µ = 0.5. At β = 5.7, it remains small, at least through µ = 0.8,
increasing towards its pure-gauge value at saturation. However,
in this high µ region the quarks are starting to decouple. We
conjecture that this means that for β = 5.7, we can probably
trust the CLE for µ ≥ 0.5.
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Figure 5: Average unitarity norm as a function of µ for β = 5.6, m = 0.025 on
a 124 lattice – red. Same, but for β = 5.7 on a 164 lattice – blue.
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Dependence of the Unitarity Norm on quark mass m

The behaviour of the CLE seems to improve if the gauge fields
remain close to the SU(3) manifold, i.e. if the unitarity norm re-
mains small. It is thus useful to study how the average unitarity
norm depends on the simulation parameters.

With β fixed at 5.6, we determine the dependence of the unitar-
ity norm on the quark mass m at µ = 0.

We have varied m from infinity (pure gauge) down to m = 0.01.
What we find is that the unitarity norm decreases as m is de-
creased. This is important, since small m is the region of most
interest.

In addition, running with a small mass increases the gap be-
tween mπ/2 and mN/3.
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Figure 6: Unitarity norm as a function of inverse quark mass at β = 5.6
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Dependence of the Unitarity Norm on β = 6/g2

We have already noted that going from β = 5.6 to β = 5.7 with
quark mass fixed at m = 0.025 results in a decrease in the
unitarity norm, and improved behaviour of the CLE.

One could argue that one should change β and m along a line
of constant physics and compare the unitarity norms at identical
physical values of µ.

To avoid such complications we choose to work with the pure
gauge (quenched) theory, i.e. that at infinite quark mass, where
there is no µ dependence. The unitarity norms we measure are
upper bounds on the finite mass values at µ = 0.

Using the quenched theory allows us to run on smaller lattices
for a given β. Also with no dynamical quarks the CLE runs much
faster.

For pure gauge theories on the lattice, the CLE has solutions
where the gauge fields remain in SU(3) and the unitarity norm
is zero. These are the solutions of the real Langevin equation.
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However these ‘real’ solutions are unstable to (small) perturba-
tions away from the SU(3) manifold into SL(3,C), which lead
to stable solutions with non-zero unitarity norms, and appear to
evolve over a compact manifold. It is these solutions that we are
studying.

The pure-gauge drift is holomorphic in the fields, so we expect
that the CLE simulations will produce the correct values of ob-
servables (up to O(dt2) corrections). In fact this appears to be
true for β ≥ 5.7. This agreement with Monte Carlo simulations
improves as we go to weaker coupling (larger β).

We find that the unitarity norms decrease as β increases, show-
ing that going to weak-coupling can produce the desired effect.

In addition to completing our simulations at β = 7.0, we plan
simulations at lower β values to better understand why the CLE
breaks down at strong couplings despite the fact that the drift is
holomorphic in the fields.
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Figure 7: Unitarity norm as a function of β = 6/g2 for pure SU(3) gauge theory.
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Figure 8: Plaquette as a function of β = 6/g2 for pure SU(3) gauge theory.
Monte Carlo values are shown for comparison.
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Finite temperature and density

We have performed some exploratory CLE simulations of 2-
flavour QCD at finite temperature on a 123 × 6 lattice on the
interval 5.3 ≤ β ≤ 5.6 at m = 0.025, which includes the finite-
temperature transition.

Even at µ = 0 we were unable to produce results which were
in even qualitative agreement with known (RHMC) values of the
chiral condensate and Polyakov loop.

We believe that, in order to perform CLE simulations with any
hope of producing reasonable results, we will need to run on
lattices with Nt large enough that β = 5.6 lies in the low-
temperature phase. This requires Nt ≥ 12.

This contrasts with 4-flavour QCD where Fodor et al. found at
least qualitatively reasonable results for Nt = 6 and quanti-
tatively reasonable results for Nt = 8. This can be under-
stood, because the larger number of flavours reduces the unitar-
ity norms so that they take reasonable values (∼ 0.1) in the low-
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temperature phase, whereas for the 2-flavour case the unitarity
norm at β = 5.3 (in the low-temperature phase for Nt = 6) is
∼ 0.7.
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Summary and Discussions

•We simulate lattice QCD with 2 flavours of light quarks (m =
0.025) at β = 5.6 and β = 5.7 at a range of µ from zero to
saturation, using CLE. We compare these results with those of
the phase-quenched approximation.

• Decreasing the coupling from β = 5.6 to β = 5.7 results in
significant improvement at small and large µ where the full and
phase-quenched theories should agree. At large µ (saturation)
we observe that the fermions decouple and we obtain the pure
gauge (quenched) results.

• At intermediate µs (the transition region) we still obtain results
which disagree with expectations and with the phase-quenched
theory.

• Since it is expected that improved results will obtain if one can
reduce the unitarity norm, i.e. keep the system closer to the
SU(3), we are studying the dependence of the unitarity norm
on m and β.
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• At fixed β and µ = 0 we observe that the unitarity norm de-
creases as we decrease the quark mass.

• At m = ∞ (pure gauge/quenched QCD) the unitarity norm de-
creases as β is increased (weaker coupling), becoming quite
small by β = 7.0.

•We are starting simulations at β = 5.8, m = 0.02 and β = 5.9,
m = 0.015 on 324 lattices, where the unitarity norms at µ = 0
are ∼ 0.106 and ∼ 0.091 respectively.

• Because simulations at βs large enough to make the unitarity
norms small requires very large lattices for Nf = 2, it might
be reasonable to run at the physically less interesting Nf = 4
(following Fodor et al.), where smaller lattices could be used, to
test the CLE.

• It remains an open question as to whether, in the weak coupling
limit at small quark masses, the CLE produces the results of full
QCD at finite µ or its phase-quenched approximation as does
the RMT.
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Our simulations are performed on the Bebop cluster at Argonne’s
LCRC, Crays Cori and Edison at NERSC, the Stampede 2 cluster
at TACC, the Bridges cluster at PSC, the Comet cluster at SDSC
and Linux PCs belonging to the HEP division at Argonne.
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